N94-18554 186468 P-11

Internal Fluid Mechanics Division

Sverdrup

Technology Inc.

Analysis of Supersonic Flows using k- ϵ Model and the RPLUS code; Progress towards High Speed Combustor Analysis.

> by J. Lee Sverdrup Technology Inc./CFD Branch for Workshop on Computational Turbulence Modeling Sept. 1993

Outline

• Problem of Interest - High Speed Combustor Flow Fields

Parameters need to be Resolved

Key Problems of Interest

• k-E Model and RPLUS code

Numerical Technique

Models being Tested

Some Results \

Summary

_

Sverdrup

Technology Inc.

Internal Fluid Mechanics Division

Problem of Interest

 Analysis of Chemically Reacting flow inside of Supersonic RAM jet Combustors-Two Key Parameters need to be determined.

Mixing/Combustion Efficiency

Kinetic Energy Efficiency (Flow Losses)

Inlet, Diffuser, etc..

• In order to do get some ideas on those parameter following (Potential Loss Mechanisms) must be modeled/determined correctly.

Mixing, Shear,

Turbulence, Vorticity,

Shock-waves, Heat Transfer,

Fuel Injector Drag, Poor Wall Pressure Integral,

Chemical Dissociation.

from 2nd JANNAF workshop on SCRAMjet Combustor performance workshop

Mixing and Injector Design

• At High Mach Number(M $\sim 5.0 +$).

Doesn't mix well!

The Natural diffusion mechanism very INEFFECTIVE.

Fuel Residence Time Extremely Small- Even with Fast Fuel Such as H₂

Geometrical Complexities

To induce Favorable mixing and Flame holding features

Back-Step/Stream Wise Vorticity/Shock-Wave Interactions

Unsteady Mechanism also being Envisioned as mixing enhancement

Kumar, Bushnell and Hussani(1987)

Sverdrup

Technology inc.

Internal Fluid Mechanics Division

Introduction of Externally Generated Mixing Enhancements

- Some External helping hand needed => Modeling Difficulties.
- Externally Generated Vorticity Through Sweep angle of the Ramp injector.

Davis(1990), Riggins and McClinton(1990), Drummond(1991).

• Multiple Transverse Injection.

Hartfield et. al. (1991)

• Flame holding tricks/ Back-step with Recirculation.

Hartfield et. al.(1991)

 Simplified analysis of these features very difficult because of limited database/understanding (Attempts are being made using CFD solutions- JANNAF Combustor Subcommittee).

Technology Inc.

Internal Fluid Mechanics Division

Numerical Modeling(CFD) of Combustor Flow Field

- CFD Analysis.
- Numerical Modeling=> Overall Analysis of performance => Difficult
- Overall Laminar Flow Fields with Complex Geometry/Finite Rate Chemistry has been demonstrated.
- Finite Rate Chemistry Model (Yoon and Shuen(1989)
- Multiple Grid Blocks- Moon (1991)
- Analysis of a typical Injector Configuration with Zero Equation Turbulence Model using LU Scheme(RPLUS) code- Lee(1993)

6

Sverdrup

Technology Inc.

Internal Fluid Mechanics Division

Simple Zero Equation Turbulence model with multiple wall scaling Buleev-Inverse square rule can be used to extend model in to three-dimensional form. (Lee (1993))

- · Good News/Bad News
- Typical velocity profiles can be reasonably predicted.
- Over all combustor flow features can be reasonably predicted.
- Near-wall temperature characteristics near non-equilibrium region around the injector and separated flow were poorly predicted.
- Overall spreading behavior of shear region poorly predicted.
- Two Equation Transport Turbulence Model has the potential to ease some of these difficulties.

Sverdrup Technology Inc.

Internal Fluid Mechanics Division

Lewis Research Center

HARTFIELD ET. AL. (1990)

GROWTH RATE VS. COMPRESSIBILITY EFFECT

DR. H. LAI

Sverdrup

Technology Inc.

Internal Fluid Mechanics Division

Two Equations Transport Turbulence model are being Analyzed

• High speed turbulence models are some what Deficient (The deficiencies are well documented(Marvin(1986), Wilcox(1993)).

Effect of Compressibility

An-isotropy (Low/High Speed).

Non-Equilibrium Flow Features (Low/High Speed).

Near-Wall Flow(Low-Reynolds Number Features (Low/High Speed)).

Inflexibility of handling Complex Geometry- Invariance Principle

(Low/High Speed)

Large Dependence in the Numerical Methods Used

(especially elliptic Solvers).

Appropriate Initial/Boundary Conditions

Etc ...

Technology Inc.

Internal Fluid Mechanics Division

K-ε Model-RPLUS Development

• LU Based k-ε Model Solver-De-coupled Approach.

Mean-Turbulence Transport Equations

LU-SSOR- Yoon and Shuen- Explicit Terms Centrally Differenced LU-SW -Steger and Warming- Explicit Terms Upwind Differenced

k-ε Models

Convective Terms + Diffusive Terms + Source Terms = 0.0

Model Only differ in Low-Reynolds Number Character.

Models performance are being Evaluated.

Implicit Source Term Handling Strategy also Being Studied

10

Sverdrup

Technology Inc.

Internal Fluid Mechanics Division

k-ε Turbulence Models being studied for potential used in Three Dimensional RPLUS Code.

• Low-Reynolds Number Model plus Dilatational Terms

Chien (1976)

Launder-Shima(1976)

Shih(1990)

Various CMOTT derivatives of k-ε Model

Realizability

Invariance

Simplified Boundary-Conditions

- Performance of the Low-Reynolds number K-e model in low-Mach number flows have been demonstrated (Patel, Rodi and Scheuerer(1985), Steffen(1993), Launder(1992)).
- Some of the Potential Difficulties in high speed turbulence model are well documented (Marvin(1993), Coakley and Huang(1992).

Technology Inc.

Internal Fluid Mechanics Division

Evaluation and Development of the RPLUS/k-ε Model Solver

- Various 2D-3D problems are being studied to optimize the numerical method and to Evaluate model performance in supersonic flows in context to the LU based numerical Technique.
- Simple 2D k- ϵ models are also being used to study various components of the flowfield generated by the complex combustor geometry previously shown.
- Studying the Numerical method/Model Behavior/Model Performance.
 - 2D Supersonic Turbulent Boundary-Layer- Skin Fraction/Heat transfer (NASA Ames Database).
 - 2D Supersonic Shock-Wave Boundary-Layer Interaction- Skin fraction/Heat
 - -Transfer/ Shock-wave(A. Smits (1990's))
 - 2D Shear-Layer Mixing (H. Lai(1993))
 - 3D Fin/Flat Plate Interaction- 3D Corner Flows-Interaction Developed through
 - a Fin generated Shock-Waves. (D. Davis(1992))

Supersonic Mixing Layer

Technology Inc.

Internal Fluid Mechanics Division

Turbulent Shock-Wave/Boundary Interactions Mach 2.87

Ramp Angle = 8.0 degrees

Sverdrup

Technology Inc.

Internal Fluid Mechanics Division

Other Factors

- Optimum Numerical Strategy with in LU frame work.
- Effects of Initial condition.
- Modeling of Compressibility terms/Dilatational terms.
- Modeling of Turbulent terms in the Finite Rate Chemistry Model.
 Anisotropy of Turbulence
- Effects Upstream and Down stream Influences (Inlet(K. Kapoor) and Diffuser(?)).
- Chemistry-Turbulence Model Interactions (A. Hsu-PDF).
- Numerical Robustness(A. Suresh).